Effects of technology complexity on the emergence and evolution of wind industry manufacturing locations along global value chains – Digitalmunition




Featured 41560_2020_685_Fig1_HTML.png

Published on August 31st, 2020 📆 | 8287 Views ⚑

0

Effects of technology complexity on the emergence and evolution of wind industry manufacturing locations along global value chains

  • 1.

    Renewable Capacity Statistics 2020 (IRENA, 2020); https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020

  • 2.

    World Energy Outlook 2019 (IEA, 2019); https://www.iea.org/reports/world-energy-outlook-2019

  • 3.

    U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis (Global Wind Network, 2014); https://energy.gov/sites/prod/files/2014/09/f18/U.S.%20Wind%20Energy%20Manufacturing%20and%20Supply%20Chain%20Competitiveness%20Analysis_0.pdf

  • 4.

    Wiser, R. et al. Expert elicitation survey on future wind energy costs. Nat. Energy 1, 16135 (2016).


    Google Scholar
     

  • 5.

    Wiser, R. et al. 2018 Wind Technologies Market Report 103 (US Department of Energy, Office of Energy Efficiency and Renewable, 2018).

  • 6.

    Industrial Strategy: Offshore Wind Sector Deal (HM Government, 2019); https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/790950/BEIS_Offshore_Wind_Single_Pages_web_optimised.pdf

  • 7.

    Hansen, U. E., Nygaard, I., Morris, M. & Robbins, G. The effects of local content requirements in auction schemes for renewable energy in developing countries: aA literature review. Renew. Sustain. Energy Rev. 127, 109843 (2020).


    Google Scholar
     

  • 8.

    Schmidt, T. S., Schmid, N. & Sewerin, S. Policy goals, partisanship and paradigmatic change in energy policy — analyzing parliamentary discourse in Germany over 30 years. Clim. Policy 19, 771–786 (2019).


    Google Scholar
     

  • 9.

    Lewis, J. I. The rise of renewable energy protectionism: emerging trade conflicts and implications for low carbon development. Glob. Environ. Polit. 14, 10–35 (2014).


    Google Scholar
     

  • 10.

    Stokes, L. C. & Warshaw, C. Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2, 17107 (2017).


    Google Scholar
     

  • 11.

    Haakonsson, S. J. & Kirkegaard, J. K. Configuration of technology networks in the wind turbine industry. A comparative study of technology management models in European and Chinese lead firms. Int. J. Technol. Manag. 70, 281–299 (2016).


    Google Scholar
     

  • 12.

    Binz, C. & Truffer, B. Global innovation systems—a conceptual framework for innovation dynamics in transnational contexts. Res. Policy 46, 1284–1298 (2017).


    Google Scholar
     

  • 13.

    Pietrobelli, C. & Rabellotti, R. Global value chains meet innovation systems: are there learning opportunities for developing countries? World Dev. 39, 1261–1269 (2011).


    Google Scholar
     

  • 14.

    Jurowetzki, R., Lema, R. & Lundvall, B.-Å. Combining innovation systems and global value chains for development: towards a research agenda. Eur. J. Dev. Res. 30, 364–388 (2018).


    Google Scholar
     

  • 15.

    Lema, R. & Lema, A. Technology transfer? The rise of China and India in green technology sectors. Innov. Dev. 2, 23–44 (2012).


    Google Scholar
     

  • 16.

    Lewis, J. I. Building a national wind turbine industry: experiences from China, India and South Korea. Int. J. Technol. Global. 5, 281–305 (2011).


    Google Scholar
     

  • 17.

    Surana, K. & Anadon, L. D. Public policy and financial resource mobilization for wind energy in developing countries: a comparison of approaches and outcomes in China and India. Glob. Environ. Change 35, 340–359 (2015).


    Google Scholar
     

  • 18.

    Binz, C., Gosens, J., Hansen, T. & Hansen, U. E. Toward technology-sensitive catching-up policies: insights from renewable energy in China. World Dev. 96, 418–437 (2017).


    Google Scholar
     

  • 19.

    World Development Report 2020: Trading for Development in the Age of Global Value Chains (World Bank, 2020).

  • 20.

    Multinational Enterprises in the Global Economy—Heavily Debated but Hardly Measured (OECD, 2018); https://www.oecd.org/industry/ind/MNEs-in-the-global-economy-policy-note.pdf

  • 21.

    Antràs, P. Conceptual Aspects of Global Value Chains NBER Working Paper No. 26539 (NBER, 2019); https://doi.org/10.3386/w26539

  • 22.

    Wind Energy Industry Manufacturing Supplier Handbook (AWEA, 2011).

  • 23.

    Hobday, M. Product complexity, innovation and industrial organisation. Res. Policy 26, 689–710 (1998).


    Google Scholar
     

  • 24.

    Huenteler, J., Schmidt, T. S., Ossenbrink, J. & Hoffmann, V. H. Technology life-cycles in the energy sector—technological characteristics and the role of deployment for innovation. Technol. Forecast. Soc. Change 104, 102–121 (2016).


    Google Scholar
     

  • 25.

    Garud, R. & Karnoe, P. Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship. Res. Policy 32, 277–300 (2003).


    Google Scholar
     

  • 26.

    OECD SME and Entrepreneurship Outlook 2019 (OECD, 2019).

  • 27.

    Supply Chain Assessment —Wind Energy 2006–2014 (Navigant Research, 2014).

  • 28.

    Hausmann, R. et al. The Atlas of Economic Complexity (MIT Press, 2013).

  • 29.

    McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. Role of design complexity in technology improvement. Proc. Natl Acad. Sci. USA 108, 9008–9013 (2011).


    Google Scholar
     

  • 30.

    Novak, S. & Eppinger, S. D. Sourcing by design: product complexity and the supply chain. Manag. Sci. 47, 189–204 (2001).


    Google Scholar
     

  • 31.

    Broekel, T. Using structural diversity to measure the complexity of technologies. PLoS ONE 14, e0216856 (2019).


    Google Scholar
     

  • 32.

    Mealy, P., Farmer, J. D. & Teytelboym, A. Interpreting economic complexity. Sci. Adv. 5, eaau1705 (2019).


    Google Scholar
     

  • 33.

    Balland, P.-A. & Rigby, D. The geography of complex knowledge. Econ. Geogr. 93, 1–23 (2017).


    Google Scholar
     

  • 34.

    Fleming, L. & Sorenson, O. Technology as a complex adaptive system: evidence from patent data. Res. Policy 30, 1019–1039 (2001).


    Google Scholar
     

  • 35.

    Huenteler, J., Ossenbrink, J., Schmidt, T. S. & Hoffmann, V. H. How a product’s design hierarchy shapes the evolution of technological knowledge—evidence from patent-citation networks in wind power. Res. Policy 45, 1195–1217 (2016).


    Google Scholar
     

  • 36.

    Observatory of Economic Complexity—Product Complexity Rankings (MIT Media Lab, 2011); https://atlas.media.mit.edu/en/rankings/product/hs07/?year_range=2011-2016

  • 37.

    Paisemi, F. EU Energy Technology Trade: Import and Export (Publications Office of the European Union, 2017); https://setis.ec.europa.eu/sites/default/files/reports/eu_energy_technology_trade.pdf

  • 38.

    Wind, I. HS Codes and the Renewable Energy Sector. Research and Analysis (International Centre for Trade and Sustainable Development, 2008).

  • 39.

    Asheim, B. T. & Coenen, L. Knowledge bases and regional innovation systems: comparing Nordic clusters. Res. Policy 34, 1173–1190 (2005).


    Google Scholar
     

  • 40.

    Lewis, J. I. & Wiser, R. H. Fostering a renewable energy technology industry: an international comparison of wind industry policy support mechanisms. Energy Policy 35, 1844–1857 (2007).


    Google Scholar
     

  • 41.

    Qiu, Y. & Anadon, L. D. The price of wind power in China during its expansion: technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Econ. 34, 772–785 (2012).


    Google Scholar
     

  • 42.

    Awate, S., Larsen, M. M. & Mudambi, R. Accessing vs sourcing knowledge: a comparative study of R&D internationalization between emerging and advanced economy firms. J. Int. Bus. Stud. 46, 63–86 (2015).


    Google Scholar
     

  • 43.

    Nieto, M. J. & Rodríguez, A. Offshoring of R&D: looking abroad to improve innovation performance. J. Int. Bus. Stud. 42, 345–361 (2011).


    Google Scholar
     

  • 44.

    Dunning, J. H. & Lundan, S. M. The internationalization of corporate R&D: a review of the evidence and some policy implications for home countries. Rev. Policy Res. 26, 13–33 (2009).


    Google Scholar
     

  • 45.

    Doblinger, C., Dowling, M. & Helm, R. An institutional perspective of public policy and network effects in the renewable energy industry: enablers or disablers of entrepreneurial behaviour and innovation? Entrep. Reg. Dev. 28, 126–156 (2016).


    Google Scholar
     

  • 46.

    Cox Pahnke, E., McDonald, R., Wang, D. & Hallen, B. Exposed: venture capital, competitor ties, and entrepreneurial innovation. Acad. Manag. J. 58, 1334–1360 (2014).


    Google Scholar
     

  • 47.

    Doblinger, C., Surana, K. & Anadon, L. D. Governments as partners: the role of alliances in U.S. cleantech startup innovation. Res. Policy 48, 1458–1475 (2019).


    Google Scholar
     

  • 48.

    Schilling, M. A. & Phelps, C. C. Interfirm collaboration networks: the impact of large-scale network structure on firm innovation. Manag. Sci. 53, 1113–1126 (2007).

    MATH 

    Google Scholar
     

  • 49.

    Gereffi, G., Humphrey, J. & Sturgeon, T. The governance of global value chains. Rev. Int. Polit. Econ. 12, 78–104 (2005).


    Google Scholar
     

  • 50.

    Sturgeon, T., Van Biesebroeck, J. & Gereffi, G. Value chains, networks and clusters: reframing the global automotive industry. J. Econ. Geogr. 8, 297–321 (2008).


    Google Scholar
     

  • 51.

    Schmidt, T. S. & Huenteler, J. Anticipating industry localization effects of clean technology deployment policies in developing countries. Glob. Environ. Change 38, 8–20 (2016).


    Google Scholar
     

  • 52.

    Brauch, H. G., Spring, Ú. O., Grin, J. & Scheffran, J. Handbook on Sustainability Transition and Sustainable Peace Vol. 10 (Springer, 2016).

  • 53.

    Haakonsson, S., Kirkegaard, J. K. & Lema, R. The decomposition of innovation in Europe and China’s catch-up in wind power technology: the role of KIBS. Eur. Plan. Stud. https://doi.org/10.1080/09654313.2020.1712329 (2020).

  • 54.

    Utility Scale Wind Towers from Canada, Indonesia, Korea, and Vietnam Investigation Nos. 701-TA-627-629 and 731-TA-1458-1461 (Preliminary) (USITC, 2019); https://www.usitc.gov/publications/701_731/pub4952.pdf

  • 55.

    Wilson, C. et al. Granular technologies to accelerate decarbonization. Science 368, 36–39 (2020).


    Google Scholar
     

  • 56.

    Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects (IRENA, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf

  • 57.

    Feinerer, I., Hornik, K. & Meyer, D. Text mining infrastructure in R. J. Stat. Softw. 25, 1–54 (2008).


    Google Scholar
     

  • 58.

    Grün, B. & Hornik, K. topicmodels: an R package for fitting topic models. J. Stat. Softw. 40, 1–30 (2011).


    Google Scholar
     

  • 59.

    Chan, G. The Commercialization of Publicly Funded Science: How Licensing Federal Laboratory Inventions Affects Knowledge Spillovers. Doctoral thesis, Harvard Univ. (2015); http://isites.harvard.edu/fs/docs/icb.topic1459278.files/CHAN-Gabriel_11-21-14_JMP%20-%20National%20Lab%20Patent%20Licensing.pdf

  • 60.

    Kim, G., Park, S. & Jang, D. in Soft Computing in Big Data Processing (eds. Lee, K. M. et al.) 71–80 (Springer International, 2014).

  • 61.

    Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).


    Google Scholar
     

  • 62.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).


    Google Scholar
     

  • 63.

    Taglioni, D. & Winkler, D. Making Global Value Chains Work for Development (The World Bank, 2016); https://doi.org/10.1596/978-1-4648-0157-0

  • 64.

    Pedersen, T. L. ggforce: accelerating ‘ggplot2’. R package version 0.1 2 (2019).

  • 65.

    Hlavac, M. Stargazer: well-formatted regression and summary statistics tables. R package version 5 (2015).

  • Source link

    Tagged with:



    Leave a Reply

    Your email address will not be published. Required fields are marked *


    loading...